Ir al contenido principal

4.3 Técnicas de sombreado

Sombreado Constante/Plano

Obtenemos una intensidad que aplicamos a un conjunto de puntos de un objeto
–Aceleramos el proceso de síntesis
–Correcto si se verifica:

• Fuente de luz en el infinito
• Observador en el infinito
• El polígono representa una superficie plana real del objeto que se modela y no es una    aproximación de un objeto curvo.


Sombreado de Gouraud

Se basa en la interpolación de intensidad o color:

• Considera que facetas planas vecinas proceden de aproximar una superficie curva (salvo que se declare una arista real entre ambas)
• Elimina en gran medida las discontinuidades de iluminación
• Es sencilla, pero produce peores resultados en objetos con brillos especulares que el método de  Phong.
• Implementado en OpenGL.
Necesita la dirección de la normal en cada vértice (si se desconoce, se calcula a partir de las normales de las facetas que contienen el vértice)
• Si dos facetas están separadas por una arista real, se utilizan dos normales diferentes para
trabajar en cada faceta (se promedian las normales situadas solo a un lado de la arista)
• A partir de la normal en cada vértice, se evalúa la ecuación de iluminación (solo para cada vértice) y se obtiene un valor de intensidad para cada uno de ellos
• Se realiza una interpolación bilineal para obtener la intensidad en cada punto dentro de la faceta (de forma incremental).


Sombreado de Phong

• Se basa en la interpolación de la dirección de la normal, calculada de la misma forma que antes.
• Igual que en Gouraud, se interpola a lo largo de cada línea de barrido, entre los puntos inicial y final, interpolados a su vez de los valores de los vértices de la arista.
• Captura mejor los brillos especulares en el medio de facetas planas (Gouraud los puede omitir).
Produce mejores resultados, a un coste computacional mayor (hay que incrementar la dirección de la normal en tres direcciones, normalizarla y calcular la ecuación de sombreado encada punto)
• Si el coeficiente de reflexión especular es pequeño, los resultados no difieren tanto (se pueden combinar objetos sombreados por ambos métodos en una escena).

Comentarios

Entradas más populares de este blog

3.1 Representación de objetos de tres dimensiones

El diseño ayudado por ordenador representa un gran ahorro de esfuerzo y tiempo. Además se consiguen resultados extraordinarios con respecto a los procedimientos clásicos de diseño. Los programas de diseño industrial o arquitectónico admiten tres maneras de representación de objetos. Modelos bidimensionales del objeto o parte de él. Se reproducen separadamente las diferentes caras, planos o cortes para ser estudiados y modificados. Normalmente se utiliza una representación formal del objeto, obteniendo sus vistas desde diferentes puntos de visualización. Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo sobre 6 planos, dispuestos en forma de cubo. También se podría definir las vistas como, las proyecciones ortogonales de un objeto, según las distintas direcciones desde donde se mire. Si situamos un observador según las seis direcciones indicadas por las flechas, obtendríamos las seis vistas posibles de un objeto.  Modelos tridimensi...

3.3 Transformaciones tridimensionales

Muchos de nuestros objetos del universo 3D serán estáticos, como paredes, terrenos y objetos de decoración, pero otros objetos requerirán movimiento. En 3D existen tres tipos de movimientos básicos que combinados conforman todas las alternativas necesarias. Estos movimientos se denominan transformaciones, dado que consisten en transformaciones lineales de coordenadas y son los siguientes: •  Traslación (translation): consiste en mover cada punto por una distancia constante, en una dirección específica. •    Rotación (rotation): movimiento de un objeto siguiendo una ruta circular. •    Escalado (scaling): incrementa o disminuye el tamaño de un objeto, por un factor de escalar. Transformation Matrix Para aplicar cada uno de los tres movimientos a una malla compuesta por triángulos, sería necesario desplazar cada uno de los vértices de la misma al lugar correspondiente. Esta operación es engorrosa para objetos de mucha complejidad y se ...

4.1 Rellenos de polígonos

   Polígono es una figura básica  dentro de las representaciones y tratamiento de imágenes bidimencionales y su utilización es muy interesante para modelar objetos del mundo real.      En un sentido amplio, se define como una región del espacio delimitada por  un conjunto de lineas (aristas) y cuyo interior puede estar rellenado por un color o patrón dado.      Casos de relleno segun su complejidad   El caso mas sencillo de relleno es el triangulo.   Luego sigue el relleno de polígonos convexos de N-lados.   Relleno de polígonos cóncavos. Métodos  de relleno de polígonos con color  SCAN-LINE LINEA DE BARRIDO INUNDACIÓN FUERZA BRUTA PATRÓN SCAN-LINE   Fila a fila van trazando lineas de color entre aristas. para scan-line que cruce el polígono se busca en...